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Abstract

We report on the curation of several publicly available datasets

for age and gender prediction. Furthermore, we present
experiments to predict age and gender with models based
on a pre-trained wav2vec 2.0. Depending on the dataset,
we achieve an MAE between 7.1 years and 10.8 years for
age, and at least 91.1% ACC for gender (female, male,
child). Compared to a modelling approach built on hand-
crafted features, our proposed system shows an improve-
ment of 9% UAR for age and 4% UAR for gender. To make
our findings reproducible, we release the best performing
model to the community as well as the sample lists of the
data splits.

1 Introduction

The automatic detection of speaker age and gender has
many use cases in human computer interaction, for exam-
ple for dialogue adaption or market research. In contrast
to subjective phenomena such as emotional arousal, the
age of a person may be objectively determined, like for ex-
ample body size, by an exact measurement. But, just like
emotional arousal, age is only one of many factors that in-
fluence the acoustic speech signal [30], and typically not
to be predicted to the year.

We curated several publicly available datasets with re-
spect to age labels and used them to train several age mod-
els based on a wav2vec 2.0 architecture. We experiment
on in- and cross-domain prediction, multi-head vs single
head models and the number of transformer layers to be
used. Finally we report the performance, using the 2010
paralinguistic challenge winner as a baseline.

Age and gender prediction based on machine learning
as such has been investigated numerous times in the past
decades. A problem in this regard is the lack of benchmark
datasets that could be used to compare approaches. There
are several publicly available age annotated datasets like
the SpeechDat I1 corpusl, CommonVoice [28], aGender [20],
Timit [21], VoxCeleb2 [27], or the NIST test set [19], but
the studies we found used only some of these, or not com-
parable train-development-test splits. In addition, the au-
thors usually only report either regression or classifica-
tion results, and use different metrics such as mean av-
erage error (MAE), accuracy (ACC), precision, recall, or
unweighted average recall (UAR).

During the 2010 Interspeech Paralinguistic Challenge
[22], age classification was one of the topics. Lingenfelser
et al. [9] report on the aGender dataset by fusing the results
of ensemble classifiers trained on subgroups of a larger
feature set and get 42.4% UAR on four age groups, the
baseline being 46.2% UAR. Katerenchuk [13] use a simi-
lar configuration with respect to classifiers and feature sets
to fuse acoustic and metadata for child speech detection.
Early studies are also based on the aGender dataset [4,
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Figure 1: Distribution of speaker age (#samples) in the
datasets for the three splits (CommonVoice age in mid-
decades).

6], both using gaussian mixture models (GMM)/support
vector machines (SVM) meta classifiers. In Metze et al.
[3], the best system reaches an F1 value of .54 with a
Linear Discriminative Analysis (LDA) on Hidden Markov
Models (HMM)s modelling phonemes on the SpeechDat
Il corpus. A human evaluation on a subset of the data
reaches .61 F1 value. Sadjadi et al. [18] describe joint
gender and age estimation using ivectors and Support Vec-
tor Regression, reaching 4.7 years MAE on the NIST SRE
2010 telephony test set. Sdnchez-Hevia et al. [15] and Tur-
sunov et al. [31] both describe joint gender and age classi-
fication with a convolutional neural network (CNN) based
on the CommonVoice dataset and report a recall of 76%
on six mixed gender-age groups and 74% UAR on twelve
mixed gender-age groups, respectively. Comparing linear
and logistic regression on ivectors with CNNs using spec-
trograms, Hechmi et al. [16] report .98 F1 for gender clas-
sification and 9.44 years MAE for age regression. They
use part of VoxCeleb?2 as a dataset with age ground truth la-
bels estimated mainly from a Wikipedia lookup, and these
labels are the basis for the VoxCeleb2 data used in this pa-
per, see Section 2.1 for details. Zazo et al. [19] propose
a long short term memory (LSTM) recurrent network and
report MAE of 6.58 years on the NIST test set. Gupta et al.
[17] classified age using a wav2vec 2.0 model on the Timit
dataset and report 5.54 years and 6.49 years MAE for male
and female speakers, respectively. Kwasny and Hemmer-
ling [33] reached a similar performance on Timit utilising a
QuartzNet architecture, pre-trained on CommonVoice and
VoxCeleb2, and fine-tuned on a joint age and sex predic-
tion. With respect to gender prediction, authors usually
refer to the biological sex. Levitan ef al. [29] report on
the aGender dataset three-class problem and reach 85%
accuracy on the test set with a Random Forest classifier
and MFCC features. Alnuaim et al. [32] use a pre-trained
ResNet 50 and fine-tune it for gender on a balanced sub-set
CommonVoice. They report a recall of .958 on two gender
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groups on the test set of CommonVoice and a similar recall
for cross-corpus performance.
With the paper at hand we see the following contribu-
tions:
* We evaluate a novel system to estimate age and gender
with fine tuned transformer models
* We present curated sample sets for train, development
and test splits of publicly available data sets and make
them available to the research community
* We compare a combined age and gender model to mod-
els specialized on a single task
* We present in-domain and cross-corpus results to ex-
amine the generalisability of the proposed system
* We investigate how many transformer layers are actu-
ally needed to properly model the tasks
* We release our best performing model to the public

2 Datasets

In order to test our approach on publicly available datasets,
we considered the ones mentioned in the introductory Sec-
tion 1. Most of them have drawbacks: The Timit and
NIST datasets mainly contain young adults, Mozilla Com-
mon Voice is labelled with self-reported decades as age,
and aGender is only available in 8 kHz telephone quality,
VoxCeleb2 might contain samples from the same speakers,
but recorded in different years. An overview on the age
distributions per split can be seen in Figure 1 and the num-
bers of samples and speakers per dataset and split in Table
1. All datasets are available for non-commercial research
and the file lists can be accessed in the GitHub repository
that accompanies this paper.”.

2.1 VoxCeleb2

Hechmi et al. [16] report on a dataset which is based on
a self-collected table for VoxCeleb2 speakers. Because
the authors (and the github repository) do not provide ex-
act sample lists but only the speaker splits, we limited the
number of samples per speaker to 20 samples. The original
number of samples per speaker in the VoxCeleb2 dataset
has a mean value of 220. We re-used the test set and split
the train set randomly into 10% development speakers and
90% for training. The age distribution for train and test
splits is shown in Figure 1. As said, we followed the splits
used in Hechmi er al. [16] which have a rather large por-
tion of test speakers. Although the age peak is still on
the young side, it reflects the world age distribution bet-
ter than, for example, Timit. As many samples are quite
long (> 20s), we used voice activity detection (VAD) to
segment the samples.

Dataset train devel test
VoxCeleb2 30300 (1515) 3120 (156) 22100 (1105)
CommonVoice 1729 (118) 186 (13) 1110 (79)
Timit 1570 (157) 170 (17) 380 (38)
aGender 29553 (324) 2974 (35) 20549 (239)

Table 1: Overview of the datasets: #samples and #speak-
ers (in parenthesis).
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Figure 2: Proposed architecture built on wav2vec 2.0.

2.2 CommonVoice

The dataset is the result of a public data collection by the
Mozilla foundation [28]. We used the de-validated col-
lection as a basis for our datasets. Because the number
of samples per speaker varies strongly (Mean: 55, STD:
296.6 ), we limited to 20 samples per speaker. Because
the age distribution is quite imbalanced, we furthermore
tried to age-balance the test and training splits by selecting
at most 20 speakers per age decade and gender, and then
chose at most 7 speakers per age-gender group as a test
set and the others for training. As a development set, we
randomly used 10% of the training speakers.

2.3 Timit

The well known Timit datasets [21] contains 16 kHz record-
ings of 630 speakers of eight major dialects of American
English, each reading ten phonetically rich sentences. Again,
we tried to age-balance the test and training splits by first
selecting at most 40 speakers per age decade and gender
and then using 5 speakers per age-gender group as a test
set, disregarding many of the speakers in their twenties. As

a development set, we randomly used 10% of the training
speakers.

2.4 aGender

The aGender dataset [20] has been collected via telephone
especially with age classification as a focus. It has been
used in the Interspeech 2010 Pralinguistic challenge[22].
The winning paper was Kockmann et al. [23] and they
reached 53.86 UAR and 81.57 UAR for the age (4 classes)
and gender (3 classes) classification for the development
set respectively with a meta classification based on SVM
and GMM. Because we wanted to be able to compare our
results with the challenge, we used the official develop-
ment set as our test set and took 10% of the training speak-
ers as a development set (the test set of the aGender dataset
is secret and not accessible). It is the only dataset that has
been collected solely for the purpose of biological age pre-
diction and therefore does contain a substantial amount of
children and already a balanced age structure.

3 Architecture

Our proposed architecture is depicted in Figure 2. It is
built on wav2vec 2.0 [25] with two custom heads to pre-
dict age and gender, respectively. We do not start train-
ing from scratch, but use the weights from a pre-trained
model. In our experiments we rely on wav2vec2-large-
robust’, a model pre-trained on read speech from Libri-
Light (60k hours) and Common Voice (600 hours), but also

3https://huggingface.co/facebook/wav2vec2-large-robust



noisy telephone speech from Fisher (2k hours) and Switch-
board (300 hours) [26]. We could show that models fine-
tuned on this variant are generally more robust against noise
compared to models that have seen only clean speech dur-
ing the pre-training [24].

As input to the heads we use the pooled hidden states
(average pooling) of the last transformer layer. Each head
consist of a fully connected layer of size 1024, a dropout
layer, and a final projection layer. In case of age, we project
to a single value predicting the age in range O to 1, where
1 corresponds to a hundred years. In case of gender, we
project to three values expressing the confidence for being
child, female, and male. During evaluation we decide in
favor of the class with the highest value.

For fine-tuning on the downstream task, we use the
ADAM optimiser with a fixed learning rate of le—4. De-
pending on the task we use two different loss functions:

concordance correlation coefficient (CCC) loss for age, which

we define as a regression problem; cross entropy (CE) loss
for gender, which we define as a multi-class classification
problem. For backpropagation we use the average of the
two losses. We run for 5 epochs with a batch size of 64 and
keep the checkpoint with best performance on the devel-
opment set. As proposed in [wagner2022dawn] we freeze
the CNN layers but fine-tune the transformer ones. When
using the term fine-tuning, we will henceforth refer to this
partial fine-tuning. These models are trained using a single
random seed, for which the performance is reported.

In total, the model has 317.5M parameters. On a three
second long input it performs 53.8G MAC operations, which
took 34.2 +£5.2ms when measured on a NVIDIA RTX
A4000 (100 repetitions). In 4.3 we will discuss how these
numbers can be reduced. As learning framework we use
PyTorch* and rely heavily on the transformer library by
HuggingFace [34].

4 Experiments

We will now report results on predicting age and gender of
a speaker from her or his voice. We treat gender detection
as a classification task and report results in terms of ac-
curacy (ACC) or unweighted average recall (UAR) for the
three classes child, female, and male. In case of age, which
we model as a regression problem, we report concordance
correlation coefficient (CCC), and, for the aGender age
groups: ACC or UAR.

4.1 Single vs combined model

We compare the performance of a combined model trained
on both tasks simultaneously to that of models trained on a
single task, i. e., either age or gender. For the latter, we use
the same architecture described in Section 3 but remove
the other head.

Results are summarised in Figure 3 and it is not diffi-
cult to recognise that the single and combined model per-
form almost identical. We can conclude that, although the
combined model does not benefit from the information of
the other channel, it is well able to learn both tasks at once.
Since this (almost) halves the resources needed to run two
separate models, a combined model should be preferred in
a multi-task setup. Throughout the remaining of the paper,
we will report results for the combined architecture with-
out explicit mention.
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Figure 3: Performance of a model trained on a single task,
i.e., either age (MAE in years/100) or gender, and a com-
bined model simultaneously trained on both entities. We
see that accuracy stays more or less the same.

4.2 Cross-corpus evaluation

In cross-corpus evaluation, a model is presented with data
from an unknown source. To simulate such a situation,
we train a model on a single dataset. For our experiment,
we choose aGender as it is the only dataset that contains
a considerable amount of child speech. In Figure 4, we
report the performance of this model as cross-corpus on
the remaining datasets, namely Common Voice, Timit, and
VoxCeleb2. For comparison, we also include in-domain
results by the model trained on all datasets.

Removing in-domain data from the training generally

leads to a performance drop on all datasets. On Common Voice,

the effect is yet small: plus one year for age and minus
one percentage point for gender. Whereas on Timit and
VoxCeleb? it is quite significant: MAE increases by four
to five years for age and ACC decreases by more than ten
percentage points for gender. In the lower part of Figure 4,
we visualise gender and age predictions aggregated over
the three datasets. The confusion matrices reveal that the
cross-domain model has problems in predicting females,
while the distribution plots show that age is generally un-
derestimated.

We conclude more and diverse data is needed to build
a robust age and gender model, especially when using an
upsampled 8 kHz dataset as training.

4.3 Varying the number of layers

In the experiments reported so far, we have used all 24
transformer layers. Dropping some of top layers reduces
the footprint of a model. However, too few layers may de-
grade the ability of the model to properly learn a task. To
investigate the effect of reducing transformer layers, we
run experiments with a varying number of layers. As we
see in Figure 5, results generally improve with more lay-
ers, though the effect is smaller for gender than for age.
In fact, a single transformer layer seems sufficient to ade-
quately model gender. For age, we can observe a consider-
able performance drop for less than six layers, while with
more than six layers, there is only a marginal increase.
We conclude that using six transformer layers provides
a good trade-off between accuracy and speed. This reduces
the number of parameters by a factor of 3.5 to 90.8M and
inference time by a factor of to 3 to 12.4 +3.3ms.
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Figure 4: In the cross-corpus condition, the model has
not seen data from the dataset it is evaluated on. Results
are compared with a model trained in an in-domain fash-
ion. The cross-domain model performs poorly in detect-
ing females (cf. confusion matrices) and predicts speakers
younger than they are (cf. distribution plots) (age: MAE in
years/100).

4.4 Comparison classical modelling approach

Finally, we compare performance to a classic modelling
approach based on hand-crafted features. As a baseline,
we choose the winner system of the 2010 Interspeech Par-
alinguistic Challenge [22]. It implements a combination
of Gaussian Mixture Models (GMM) and Support Vector
Machines (SVM), followed by linear Gaussian backends
and logistic regression-based fusion, which uses as input
a large feature set of acoustic, prosodic, and voice quality
features. For more information see Kockmann et al. [23].

In Table 2, we compare the performance of the baseline
system with our best performing model (24 layers) when
trained either only on aGender or on all datasets introduced
in Section 2. In case of age, we map the continuous predic-
tions of our model to the four classes child, youth, adulate,
and senior as proposed by the challenge organisers. In ad-
dition, we include results for the combined age/gender task
with seven classes used in the challenge [22]. Depending
on the task, UAR and ACC of the baseline is improved by
4-10 percentage points. Using all datasets during training
provides an additional, yet small boost.

We can conclude that deep learning improves the ac-
curacy compared to a classic modelling based on manual
feature engineering.

4.5 Age/gender prediction of emotional data

When testing the published model on the Berlin emotional
database [35], the MAE for all samples age prediction is
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Figure 5: Results with different number of transformer
layers. For gender, a single transformer layer seems suffi-
cient, whereas for age, six layers provide a good trade-off
between speed and accuracy (age: MAE in years/100).

Age Gender Combined Training

System 4-class 3-class 7-class
Development
baseline [23] .56/.55 .82/.87 547 .54 aGender
wav2vec 2.0 .60/.60 .84/.92 .587.60 aGender
wav2vec 2.0 61/.61 .86/.91 .597/.61 All
Test

baseline [23] .52/.51 .83/.86 N/A aGender
wav2vec 2.0 .60/.57 .86/.90 571.56 aGender
wav2vec 2.0 .61/.57 .87/.88 .571/.56 All

Table 2: Comparison with baseline system based on hand-
crafted features. Results are reported in terms of UAR
/ ACC on the development set (upper part) and test set
(lower part). In case of age, we map the predictions of our
model to the four classes child, youth, adult, and senior. In
the combined task, age and gender are jointly represented
by seven classes.

8.35 and the UAR for binary gender prediction 96.04. When
only the neutral samples are used, the MAE drops to 5.94

and the UAR to 100. Clearly, the acted emotional expres-

sion jeopardizes the quality of our model, as it has been

trained on non-emotional data.

5 Conclusions and Outlook

We performed experiments on age and gender prediction
based on four datasets and a fine tuned transformer archi-
tecture.A model trained on all data sets, together with the
test, train, and develpment splits, has been made public
and can be used as a baseline for other authors. We will
continue to investigate age detection by using other model
architectures and perhaps combining them with expert fea-
tures. Especially speech data from children is sparse and
we will look for such data or try to synthesise data with
generative models.

6 Acknowledgements
This research has been partly funded by the European EAS-

IER (Intelligent Automatic Sign Language Translation) project

(Grant Agreement number: 101016982) as well as the Eu-
ropean MARVEL (Multimodal Extreme Scale Data Ana-



Iytics for Smart Cities Environments) project (Grant Agree-
ment ID: 975337).

7 References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

F. Eyben, M. Wollmer, and B. Schuller, “openSMILE — the Mu-
nich versatile and fast open-source audio feature extractor,” in
Proceedings of the 18t" ACM international conference on Mul-
timedia, 2010, pp. 1459-1462, 1SBN: 978-1-60558-933-6.

B. Schuller, S. Steidl, A. Batliner, J. Hirschberg J.and Burgoon, A.
Baird, A. Elkins, Y. Zhangl, E. Coutinho, and K. Evanini, “The
INTERSPEECH 2016 Computational Paralinguistics Challenge:
Deception, Sincerity & Native Language,” in Proceedings of the
17t" Annual Conference of the International Speech Communica-
tion Association, INTERSPEECH 2016, 2016.

F. Metze, J. Ajmera, R. Englert, U. Bub, F. Burkhardt, J. Stegmann,
C. Miiller, R. Huber, B. Andrassy, J. Bauer, and B. Littel, in ICASSP,
IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, vol. 4, 2007.

T. Bocklet, A. Maier, J. Bauer, F. Burkhardt, and E. N6th, “Age
and gender recognition for telephone applications based on GMM
supervectors and support vector machines,” in ICASSP, IEEE In-
ternational Conference on Acoustics, Speech and Signal Process-
ing — Proceedings, 2008.

F. Burkhardt, M. Eckert, W. Johannsen, and J. Stegmann, “A database
of age and gender annotated telephone speech,” in Proceedings
of the 7" International Conference on Language Resources and
Evaluation, LREC 2010, 2010.

M. Feld, F. Burkhardt, and C. Miiller, “Automatic speaker age and
gender recognition in the car for tailoring dialog and mobile ser-
vices,” in Proceedings of the 11th Annual Conference of the In-
ternational Speech Communication Association, INTERSPEECH
2010, 2010.

M. Briickl, Altersbedingte Verdnderungen der Stimme und Sprech-
weise von Frauen (Miindliche Kommunikation). Berlin: Logos Ver-
lag, 2011, vol. 7.

J. Shor, A. Jansen, R. Maor, O. Lang, O. Tuval, F. de Chaumont
Quitry, M. Tagliasacchi, I. Shavitt, D. Emanuel, and Y. Haviv,
“Towards Learning a Universal Non-Semantic Representation of
Speech,” in Proc. Interspeech 2020, 2020, pp. 140-144.

F. Lingenfelser, J. Wagner, T. Vogt, J. Kim, and E. André, “Age
and gender classification from speech using decision level fusion
and ensemble based techniques,” in Proceedings of the 11th An-
nual Conference of the International Speech Communication As-
sociation, INTERSPEECH 2010, 2010.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal
of Artificial Intelligence Research, 2002.

F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. Andre, C.
Busso, L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan, and
K. P. Truong, “The Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) for Voice Research and Affective Computing,” [EEE
Transactions on Affective Computing, 2016.

M. Briickl and F. Heuer, Irrna: Coefficients of interrater relia-
bility — generalized for randomly incomplete datasets, R pack-
age version 0.1.4, 2018. [Online]. Available: https://CRAN.R-
project.org/package=irrNA.

D. Katerenchuk, “Age group classification with speech and meta-
data multimodality fusion,” in 15th Conference of the European
Chapter of the Association for Computational Linguistics, EACL
2017 - Proceedings of Conference, 2017.

C. Oates, A. Triantafyllopoulos, I. Steiner, and B. W. Schuller,
“Robust speech emotion recognition under different encoding con-
ditions.,” in INTERSPEECH, 2019, pp. 3935-3939.

H. A. Sanchez-Hevia, R. Gil-Pita, -. M. Utrilla-Manso, M. Rosa-
Zurera, and M. Utrilla-Manso, “Age group classification and gen-
der recognition from speech with temporal convolutional neural
networks,” Multimedia Tools and Applications, 2022.

K. Hechmi, T. N. Trong, V. Hautaméki, and T. Kinnunen, “Vox-
celeb enrichment for age and gender recognition,” in 202/ IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU),
2021, pp. 687-693.

T. Gupta, D. T. Truong, T. T. Anh, and C. E. Siong, “Estimation
of speaker age and height from speech signal using bi-encoder
transformer mixture model,” Proceedings of the Annual Confer-
ence of the International Speech Communication Association, IN-
TERSPEECH, vol. 2022-September, pp. 1978—1982, Mar. 2022.
S. O. Sadjadi, S. Ganapathy, and J. W. Pelecanos, “Speaker age
estimation on conversational telephone speech using senone pos-
terior based i-vectors,” ICASSP, IEEE International Conference on

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Acoustics, Speech and Signal Processing - Proceedings, vol. 2016-
May, pp. 5040-5044, May 2016.

R. Zazo, P. S. Nidadavolu, N. Chen, J. Gonzalez-Rodriguez, and
N. Dehak, “Age estimation in short speech utterances based on
Istm recurrent neural networks,” IEEE Access, vol. 6, pp. 22 524—
22530, Mar. 2018.

F. Burkhardt, M. Eckert, W. Johannsen, and J. Stegmann, “A database
of age and gender annotated telephone speech,” in Proceedings
of the Seventh International Conference on Language Resources
and Evaluation (LREC’10), Valletta, Malta: European Language
Resources Association (ELRA), May 2010.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pal-
lett, and N. L. Dahlgren, Darpa timit acoustic phonetic continuous
speech corpus cdrom, 1993.

B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers, C.
Miiller, and S. Narayanan, “The interspeech 2010 paralinguistic
challenge,” Proceedings of the 11th Annual Conference of the In-
ternational Speech Communication Association, INTERSPEECH
2010, pp. 2794-27917, 2010.

M. Kockmann, L. Burget, and J. Cemocky, “Brno university of
technology system for interspeech 2010 paralinguistic challenge,”
in Proceedings of the 11th Annual Conference of the International
Speech Communication Association (INTERSPEECH 2010), vol. 2010,
Makuhari, Chiba, JP: International Speech Communication Asso-
ciation, 2010, pp. 2822-2825.

J. Wagner, A. Triantafyllopoulos, H. Wierstorf, M. Schmitt, F.
Burkhardt, F. Eyben, and B. W. Schuller, “Dawn of the trans-
former era in speech emotion recognition: Closing the valence
gap,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pp. 1-13, 2023.

A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “Wav2vec 2.0: A
framework for self-supervised learning of speech representations,”
in Advances in Neural Information Processing Systems (NeurIPS),
Vancouver, BC, Canada, 2020, pp. 12449-12460.

W.-N. Hsu, A. Sriram, A. Baevski, T. Likhomanenko, Q. Xu, V.
Pratap, J. Kahn, A. Lee, R. Collobert, G. Synnaeve, and M. Auli,
“Robust wav2vec 2.0: Analyzing domain shift in self-supervised
pre-training,” arXiv preprint arXiv:2104.01027, 2021.

A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, “Voxceleb:
Large-scale speaker verification in the wild,” Computer Speech &
Language, vol. 60, p. 101 027, Mar. 2020.

R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer,
R. Morais, L. Saunders, F. M. Tyers, and G. Weber, “Common
voice: A massively-multilingual speech corpus,” LREC 2020 - 12th
International Conference on Language Resources and Evaluation,
Conference Proceedings, pp. 4218-4222, 2020.

S. I. Levitan, T. Mishra, and S. Bangalore, “Automatic identifi-
cation of gender from speech,” Proceedings of the International
Conference on Speech Prosody, vol. 2016-January, pp. 84-88,2016.
S. Schétz, “Acoustic analysis of adult speaker age,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 4343
LNALI, pp. 88-107, 2007.

A. Tursunov, J. Y. Choeh, and S. Kwon, “Age and gender recog-
nition using a convolutional neural network with a specially de-
signed multi-attention module through speech spectrograms,” Sen-
sors, vol. 21, no. 17, p. 5892, 2021.

A. A. Alnuaim, M. Zakariah, C. Shashidhar, W. A. Hatamleh, H.
Tarazi, P. K. Shukla, and R. Ratna, “Speaker gender recognition
based on deep neural networks and resnet50,” Wireless Communi-
cations and Mobile Computing, vol. 2022, pp. 1-13, 2022.

D. Kwasny and D. Hemmerling, “Joint gender and age estimation
based on speech signals using x-vectors and transfer learning,”
arXiv preprint arXiv:2012.01551, 2020.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P.
Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P.
von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-of-the-
art natural language processing,” in Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing:
System Demonstrations, Online: Association for Computational
Linguistics, Oct. 2020, pp. 38-45.

F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, and B. Weiss,
“A database of german emotional speech,” in 9th European Con-
ference on Speech Communication and Technology, vol. 5, Sep.
2005, pp. 1517-1520. por: 10.21437/Interspeech.2005-446.


https://CRAN.R-project.org/package=irrNA
https://CRAN.R-project.org/package=irrNA
https://doi.org/10.21437/Interspeech.2005-446

	Introduction
	Datasets
	VoxCeleb2
	CommonVoice
	Timit
	aGender

	Architecture
	Experiments
	Single vs combined model
	Cross-corpus evaluation
	Varying the number of layers
	Comparison classical modelling approach
	Age/gender prediction of emotional data

	Conclusions and Outlook
	Acknowledgements
	References

