

Towards Open Science in Acoustics

Foundations and best practices

Sascha Spors 1, Matthias Geier 1 and Hagen Wierstorf 2

¹ Institute of Communications Engineering, University of Rostock

² Filmuniversität Babelsberg KONRAD WOLF

Jahrestagung der Deutschen Gesellschaft für Akustik 7.3.2017

The Scientific Method

- formulation, testing, and modification of hypotheses
- systematic observation, measurement, and experiment
- reproducibility

Branches [Donoho 2009, Stodden 2014a]

- 1. deductive \rightarrow mathematics, formal logic
- 2. empirical \rightarrow statistical analysis of controlled experiments
- 3. computational
 - large-scale simulations
 - data-driven computational science

potentially new branch(es)

myself

my future self

- myself
- my future self
- my colleagues

- my future self
- my colleagues
- other researchers

- my future self
- my colleagues
- other researchers
- all people in the world

- my future self
- my colleagues
- other researchers
- all people in the world
- science itself

The Elements of Open Science

compiled from https://en.wikipedia.org/wiki/Open_science and http://openscienceasap.org/open-science

Procedure

1. Idea

- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

from https://openclipart.org/

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- hypothesis
- procedure
- stimuli

...

test subjects

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- hypothesis
- procedure
- stimuli
- test subjects
 - ...

Open Methodology

Procedure

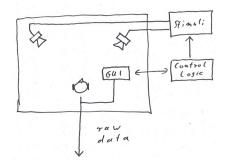
- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- mathematical derivations
- numerical simulations
- generation of stimuli
- control logic, GUI

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- mathematical derivations
- numerical simulations
- generation of stimuli
- control logic, GUI

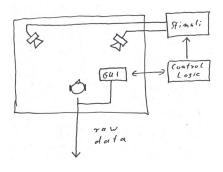

Open Notebook Science

Open Data

Open Source

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath



Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation

4. Experiment

- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

Open Data

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment

5. Analysis

- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- anonymization of data
- outlier removal
- statistical analysis

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment

5. Analysis

- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- anonymization of data
- outlier removal
- statistical analysis

Open Methodology

Open Source

Open Data

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis

6. Manuscript

- 7. Peer review
- 8. Publication
- 9. Aftermath

text

- references
- visualization of results (plots)

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis

6. Manuscript

- 7. Peer review
- 8. Publication
- 9. Aftermath

text

- references
- visualization of results (plots)

Open Access

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- ratings, comments
- revised manuscript

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- ratings, comments
- revised manuscript

Open Peer Review

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- manuscript
- supplementary materials
- presentation

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review
- 8. Publication
- 9. Aftermath

- manuscript
- supplementary materials
- presentation

Open Access

Open Source

Open Data

Procedure

- 1. Idea
- 2. Design of experiment
- 3. Computation
- 4. Experiment
- 5. Analysis
- 6. Manuscript
- 7. Peer review

8. Publication

9. Aftermath

- reproduction by third parties
- post-publication review
- errata, code and data revision
- ideas for next study...

Incentives and Barriers

Selected results from a survey of the machine learning community

Barriers [Stodden 2014], N=134

- time to document and clean up (54/77 %)
- dealing with questions from users (34/52 %)
- not receiving attribution (44/42 %)
- possibility of patents (–/40 %)
- legal barriers (e.g. copyright) (34/41 %)

Incentives

- encourage scientific advancement (81/91 %)
- encourage sharing in others (90/79 %)
- be a good community member (86/79 %)
- set a standard in the field (82/76 %)
- improve the calibre of research (85/74 %)

(Data/Code)

Management of Research Data

- systematic management of research data is a prerequisite for open and reproducible science
- becoming mandatory (DFG, Horizon 2020, NSF, ...)

Principles [DFG 2013, HRK 2014, Stodden 2014b, H2020 2016]

- develop a comprehensive data management plan
- use workflow tracking in the research process
- make data findable, accessible, interoperable and reusable (FAIR)
- apply open licensing models
- offer training and qualification

Copyright and Licenses

- unclear situation when publishing data without explicit license
- license should be as open as possible to promote re-use
- legal implications are complex and hard to oversee

Available licensing frameworks

- Software: GNU Public License, BSD, MIT, ...
- Content: Creative Commons, ...

Recommendations

Reproducible Research Standard (RRS) [Stodden, 2009]

Services for Open Science (Selection)

Generic repositories

- GitHub
- Bitbucket

Virtual Research Environments

- Open Science Framework (OSF)
- gCUBE
- hubzero

Journals

- Open Science Journal
- Journal of Open Research Software

Repositories for research data

- Zenodo
- runmycode
- datahub

Personal Experience

- public release of the SoundScape Renderer (SSR) in 2010
- various toolboxes, datasets, open access papers, open educational resources
- internal data management: Redmine, svn, git
- public releases: github, zenodo, wordpress

Challenges

- initial effort (e.g. training)
- missing versioning tool/platform for (large) data bases

Benefits

- documentation/clean up/discussions for public release
- bug reports, positive community feedback
- potentially more citations [Brody 2006]

Conclusions

- reproducibility of results is essential for the scientific method
- Open Science by itself does not ensure the ease of reproducibility
- evaluation measures contradict scientific innovation
- training and qualification required

github.com/spatialaudio
github.com/twoears
spatialaudio.net

O Code () Issues ()			O Unwatch - 7	ngs
io description, website, or Add topics	tapics provided.			641
@ 23 commits	P 2 branchos	© Ø releases	AL 3 contributors	@ CC-8Y-4.0
Drunch: master - New pull re	quest		Create new file Upload files Fir	d file Clone or clowniced -
👮 apora Minor edita			Latent	commit delebes 4 minutes ago
ile tak	Minor edita			4 minutes ago
DOENSE	Added license			11 days ago
README.md	Update README.md			11 days ago
III README.md				
meeting (DAGA) of th	a German accustical socie	ty (DEGA), 2017, Kiel, Ge	ons and Best Practices' preser amany. se attribute the work as follow	

meeting (DAGA) of the German acoustical society, 2017, Kiel, German

References

- [Brody 2006] T.D. Brody, Evaluating research impact through open access and scholary communication, PhD thesis, May 2006.
- [DFG 2013] Sicherung guter wissenschaftlicher Praxis, Deutsche Forschungsgemeinschaft, 2013.
- [Donoho 2009] David Donoho, Arian Maleki, Inam Rahman, Morteza Shahram, Victoria Stodden, 15 Years of Reproducible Research in Computational Harmonic Analysis, Computing in Science and Engineering, 11(1), 2009.
 - [HRK 2014] Hochschulrektorenkonferenz. Management von Forschungsdaten eine zentrale strategische Herausforderung für Hochschulleitungen, 13.5.2014.
 - [H2020 2016] H2020 Programme: Guidelines of FAIR Data Management in Horizon 2020, European Research Commission, 26.7.2016.
- [Stodden 2009] Vitoria Stodden, The Legal Framework for Reproducible Scientific Research, Computing in Science & Engineering, January/February 2009.
- [Stodden 2014a] Victoria Stodden, Resolving Reproducibility in Computational Science: Tools, Policy, and Culture, talk, 8.10.2014.
- [Stodden 2014b] Victoria Stodden and Sheila Miguez, Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research, Journal of Open Reserach Software, 2(1):e21, pp. 1-6.