BSS EVAL OR PEASS? PREDICTING THE PERCEPTION OF SINGING-VOICE SEPARATION
Audio Examples { bit.ly/2GutUKR }

UNIVERSITY OF

SURREY

EPSRC

Engineering and Physical Sciences
Research Council

Dominic Ward, Hagen Wierstorf, Russell Mason, Emad M. Grais, Mark D. Plumbley

Centre for Vision, Speech and Signal Processing | Institute of Sound Recording | University of Surrey, Guildford, UK

Results

Subjective Listening Assessment

Can these toolkits be used to predict the perception of
singing-voices extracted by modern source separation

Objective Evaluation of Audio Source Separation

e Separating the singing-voice from music is a difficult
task, however, deep-learning methods show significant
improvements over traditional techniques such as NMF
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Subjective ratingsaj_

Artifacts Perceptual Score (APS)
Target Perceptual Score (TPS)

Interference Perceptual Score (IPS)
Overall Perceptual Score (OPS)

1 Vincent et al. (2006) { 10.1109/tasl.2011.2109381 }
2 Emiya etal. (2012) { 10.1109/tasl.2011.2109381 }

Interference Anchor = Original Mixture .

Hidden Reference = Original Vocals .

Interface for Task 1. Examples at { bit.ly/2GutUKR }

3 SISEC 2016 { http://sisec17.audiolabs-erlangen.de }

Important to reinforce attribute definitions e
with audio examples
APS of the PEASS toolkit showed the o

strongest predictive ability

IPS (PEASS) and ISR (BSS Eval) were
comparable in performance o
Metrics far from perfect (large RMSE) when
considering 100-point scale

Remapping of features necessary to better
oredict the perceptual scales used here
Next time, emphasise overall sound
quality as some listeners focused only on
voice

We are currently running similarity
experiments for assessing SDR and OPS
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