Towards binaural modeling including cognition: the Two!Ears model

Hagen Wierstorf, Alexander Raake

Institut für Medientechnik, TU Ilmenau

17. March 2016

Motivation

Goal:

- 1. Identify target and localise it
- 2. Understand target

Results changes

- Prior knowledge
- Interactive listening

Kopčo et al. (2010), Speech localization in a multitalker mixture, JASA Brungart and Simpson (2007), Cocktail party listening in a dynamic multitalker environment, Perception & Psychophysics Josupeit and Hohmann (2015), Modeling localization and word recognition in a multitalker setting, DAGA

Model structure

Auditory front-end

Auditory front-end

- AMToolbox, but in a combined manner
- Block based processing
- Change of parameter during processing
- Just ask for the auditory features you need

>> requestList

Request name	Label	Processor
adaptation	Adaptation loop output	adaptationProc
amsFeatures	Amplitude modulation spectrogram	modulationProc
autocorrelation	Autocorrelation computation	autocorrelationProc
crosscorrelation	Crosscorrelation computation	crosscorrelationProc
filterbank	DRNL output	drnlProc
filterbank	Gammatone filterbank output	gammatoneProc
gabor	Gabor features extraction	gaborProc
ic	Inter-aural coherence	icProc
ild	Inter-aural level difference	ildProc
innerhaircell	Inner hair-cell envelope	ihcProc
itd	Inter-aural time difference	itdProc
moc	Medial Olivo-Cochlear feedback	mocProc
myNewRequest	A description of my new request	templateProc
offsetMap	Offset map	offsetMapProc
offsetStrength	Offset strength	offsetProc
onsetMap	Onset map	onsetMapProc
onsetStrength	Onset strength	onsetProc
pitch	Pitch estimation	pitchProc
precedence	Precedence effect	precedenceProc
ratemap	Ratemap extraction	ratemapProc
spectralFeatures	Spectral features	spectralFeaturesProc
time	Time domain signal	preProc

Decorsière et al. (2015), Two!Ears Auditory Front-end 1.0, doi: 10.5281/zenodo.28008

Auditory front-end

Time domain signals ITD 8000 Right ear ------ Left ear 4927 Center frequency (Hz) 0.5 0.5 2995 Amplitude 1789 0 1034 -0.5 561 -0.5 265 80 0.2 0.4 0.8 1.2 1.4 0.2 0.4 0.6 0.8 1.2 1.4 0.6 1 Time (sec) Time (s)

Robot / Binaural simulator

Robot

- Simple recording of binaural signals
- Allows for arbitrary positioning
- You need a robot
- Complicated software engineering

Binaural simulator

- Block-based convolution of impulse responses and audio material
- Uses the convolution C++ core of the SoundScape Renderer ⇒ mex-file
- Acoustic scene has to be specified
- Database needed

```
<scene
  BlockSize="4096"
  SampleRate="44100"
  MaximumDelav="0.05"
  PreDelay="0.0"
  LengthOfSimulation="5.0"
  NumberOfThreads="1"
  Renderer="ssr binaural"
  HRIRs="impulse responses/qu kemar anechoic/QU KEMAR anechoic 3m.sofa">
  <source Position="1 2 1.75"
          Type="point"
          Name="Cello"
          Volume="0.4">
    <buffer ChannelMapping="1"
            Type="fifo"
            File="stimuli/anechoic/instruments/anechoic cello.wav"/>
  </source>
  <sink Position="0 0 1.75"</pre>
        UnitX="1 0 0"
        Unit7="0 0 1"
        Name="Head"/>
</scene>
```

Binaural simulator

- Database of impulse responses
- Collection of new measurements and existing ones
- Usage of SOFA file format

Winter et al. (submitted), Database of binaural room impulse responses of an apartment-like environment, 140th AES

Blackboard system

Blackboard system

Localization of multiple sources in reverberant environments

Performance increases by

- Multi-conditional training
- Step wise head rotations

Ma et al. (2015), A machine-hearing system exploiting head movements for binaural sound localisation in reverberant conditions, ICASSP

May et al. (2015), Robust localisation of multiple speakers exploiting head movements and multi-conditional training of binaural cues, ICASSP

Blackboard system

Identify target and localize it

Interaction between localisation and identification implemented by segmentation:

Ma et al. (2015), Exploiting top-down source models to improve binaural localisation of multiple sources in reverberant environments, Interspeech

Getting involved

Ultimate Goal is to provide a framework that can be used by everyone in order to help advance binaural modeling

Documentation

New to Two!Ears or auditory modelling? This is the place to start!

http://twoears.aipa.tu-berlin.de/doc

Image: Strategy and Strate

https://github.com/twoears

http://twoears.eu

Conclusion

Highlights:

- Incorporation of top-down processes
- Auditory front-end: just ask for an auditory feature
- Binaural simulator: interaction with the acoustic scene
- Database: large collection of HRIRs and BRIRs all in the same format
- Large documentation

Challenges:

- Complexity of the model
- Usability could be improved

http://spatialaudio.net

0