Perceptual Evaluation of Source Separation for Remixing Music

H. Wierstorf¹ D. Ward¹ E. M. Grais¹ M. D. Plumbley¹ R. Mason² C. Hummersone²

¹Centre for Vision, Speech and Signal Processing, University of Surrey ²Institute of Sound Recording, University of Surrey

143rd AES Convention 20.10.2017, CC BY 4.0

Source separation for music

Reference: vocals others mixture

Source separation: vocals others

How to talk about source separation?

- **Sound quality**: artifacts and distortion added
- Interference: not perfect separation achieved

Source separation for music

How to evaluate source separation?

- **BSS eval**: signal decomposition and energy ratios¹
- PEASS: signal decomposition and auditory model²

Open questions

Correlation with perception has been questioned³

¹Vincent, et al. (2006), *IEEE TASLP*, doi: 10.1109/TSA.2005.858005 ²Emiya, et al. (2011), *IEEE TASLP*, doi: 10.1109/TASL.2011.2109381 ³e.g. Gupta, et al. (2015), *WASPAA*, doi: 10.1109/WASPAA.2015.7336923

BSS eval

Decompose signal into different components

$$S_{estimated} = S_{original} + e_{interferer} + e_{artifacts}$$

$$SAR = 10 \log_{10} \frac{||s_{original} + e_{interferer}||^2}{||e_{artifacts}||^2}$$

$$SIR = 10 \log_{10} \frac{||s_{original}||^2}{||e_{interferer}||^2}$$

Source separation for music

Reference: vocals others mixture

Source separation: vocals others

How to talk about source separation?

- **Sound quality**: artifacts and distortion added
- Interference: not perfect separation achieved

Source separation for music

Reference: vocals others mixture

Source separation: vocals others mixture

How to talk about source separation?

- **Sound quality**: artifacts and distortion added
- Interference: not perfect separation achieved

Remixing using source separation

- Modify component levels⁴
- Change positions (upmix)⁵
- Change frequency content⁶
- Add effects⁷
- Mashups

⁴Itoyama, et al. (2009), *ISMIR*, pp. 133–138 ⁵Cobos, et al. (2008), *ISCCSP*, doi: 10.1109/ISCCSP.2008.4537423 ⁶Yoshii, et al. (2005), *WASPAA*, doi: 10.1049/ic.2005.0733 ⁷Woodruff, et al. (2006), *ISMIR*, pp. 314–319

Evaluation of remixes

- Evaluate the actual remix
- Problem if only asked for preference or naturalness⁸
- Enable for adjustment by listeners⁹
- Trade-off between artifacts and level increase¹⁰
- Predictions with BSS eval?

⁸Gillet and Richard (2005), *WASPAA*, doi: 10.1109/ASPAA.2005.1540232 ⁹Yoshii, et al. (2005), *WASPAA*, doi: 10.1049/ic.2005.0733 ¹⁰Pons, et al. (2016), *JASA*, doi: 10.1121/1.4971424

- Start with reference mix
- Introduce changes in level of vocals
- Rate sound quality and loudness balance
- Look for correlations with SAR and SIR

Loudness balance describes the relation of the overall loudness of the vocals to the overall loudness of the remaining instruments. It does not include short and abrupt changes in loudness that you might experience for some test sounds. It is more considered with the general balance of the vocals and the accompanying instruments.

MUSHRA inspired experiment using Web Audio Evaluation Tool¹¹

¹¹Jillings, et al. (2015), *SMC*, github: BrechtDeMan/WebAudioEvaluationTool

- 2 tasks: sound quality and loudness balance
- 5 source separation algorithms
- 6 songs (converted to mono)
- 3 remixes, level of vocal (0 dB, 6 dB, 12 dB)
- 3 anchor and references for every task
- loudness anchor: vocals −14 dB
- quality anchor: artifacts, distortions, 3.5 kHz low pass
- 15 participants

Stimuli

- Signal separation evaluation campaign (SiSEC)¹²
- The MUS task includes 23 algorithms and 100 mixed songs¹³

SAR:	7.7	6.1	2.8	6.3	-3.4
SIR:	10.2	11.1	8.8	6.2	7.0
Vocal:	UHL3	NUG3	OZE	GRA3	KON

¹²Liutkus, et al. (2017), *LVA/ICA*, doi: 10.1007/978-3-319-53547-0_31 ¹³https://www.sisec17.audiolabs-erlangen.de

Results

Average across medians of every song

Connected to level balance of original mix?

- Song 30, level balance: 1.7 dB
- Song 48, level balance: -5.7 dB
- Weak correlation with both results for 12 dB
- Two songs were worse in level balance than song 48

BSS eval and remixes

BSS eval and remixes

Correlation for 12 dB conditions

BSS eval and remixes

¹⁴Liu et al. (2015), *EUSIPCO*, doi: 10.1109/EUSIPCO.2015.7362551

Conclusions

- Source separation methods suitable for level remixing
- Trade off between achievable level and sound quality
- Maximum reachable level
- BSS eval can be used to pick algorithm
- Connection to adjustment experiments?

https://hagenw.github.io

LVA ICA 2018

14th International Conference on Latent Variable Analysis and Signal Separation July 2-6, 2018 University of Surrey, Guildford, UK

http://cvssp.org/events/lva-ica-2018