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Abstract
Driven by the need for larger and more diverse datasets to
pre-train and fine-tune increasingly complex machine learning
models, the number of datasets is rapidly growing. audb is an
open-source Python library that supports versioning and docu-
mentation of audio datasets. It aims to provide a standardised
and simple user-interface to publish, maintain, and access the
annotations and audio files of a dataset. To efficiently store the
data on a server, audb automatically resolves dependencies be-
tween versions of a dataset and only uploads newly added or
altered files when a new version is published. The library sup-
ports partial loading of a dataset and local caching for fast ac-
cess. audb is a lightweight library and can be interfaced from
any machine learning library. It supports the management of
datasets on a single PC, within a university or company, or
within a whole research community.

1. Introduction
To foster progress in automatic speech emotion recognition and
related learning tasks, it is crucial to have a quick and easy way
of accessing an ensemble of datasets for training and evalua-
tion [1]. This requires that the datasets have a unique identifier,
are versioned, can be shared and combined, are documented in
a standardised way [2], and can be accessed from a common
user interface.

This paper presents audb, a Python library to publish, main-
tain, and access labelled or unlabelled audio data in machine
learning pipelines. It also supports audio tracks embedded in
video files. It can load a dataset by name and version from
different repositories. The dataset is then provided in a well
defined specification (audformat1), and its audio data can be re-
sampled, remixed, or converted to the desired format. A caching
mechanism guarantees quick access. A dataset consists of a root
folder with a header file and multiple table files holding meta-
data and annotations, and the referenced audio files, usually or-
ganised into sub-directories. The Python library audinterface2

provides an interface to read and process the audio data of one
or more datasets.

audb is under continuous development and has been used
to publish and maintain 840 datasets and versions since 4 years
inside audEERING. It is released open-source since 2021 un-
der an MIT license, available via PyPI3 and Github,4 and the
documentation is hosted on the project website.5

1https://audeering.github.io/audformat/
2https://audeering.github.io/audinterface/
3https://pypi.org/project/audb/
4https://github.com/audeering/audb/
5https://audeering.github.io/audb/

2. Related Work
With the introduction of Git in 2005 and platforms like Github
in 2008 for development and sharing of code, it became obvi-
ous that no convenient solution for audio data management and
sharing existed within the research community. In 2014, Git
Large File Storage6 was released and established as the stan-
dard way of including binary files in git repositories based on
similar ideas like git-media7 which existed already since 2009.
With this approach, it became possible to have git repositories
that provide versioning of data and track authorship of certain
changes to the data. As Git Large File Storage did not focus
on a particular kind of binary data to be versioned Data Ver-
sion Control8 evolved since 2017 with a focus on versioning
data, machine learning models, and experiments to foster re-
producibility [3, 4, 5].

In parallel, the problem of sharing large amount of re-
search data was tackled by approaches like Zenodo established
in 2013 [6]. Zenodo allows researchers to upload datasets and
provides a digital object identifier [7] to make datasets easier to
cite and provide long-term access to them [8]. Access to shared
data can be improved if the data and its corresponding metadata
or annotations are also provided in a standardised way. One
successful example from the audio community is the Spatially
Oriented Format for Acoustics (SOFA) format for impulse re-
sponses [9].

Recently, different audio communities have addressed the
problem of reproducibility with open-source toolkits, which
help to re-run experiments and access related datasets. Bittner
et al. [10] introduced a Python library to load and manage anno-
tations for Music Information Retrieval (MIR) datasets, which
was later extended for more general audio datasets [11]. The au-
dio source separation community develops the Asteroid toolkit
which can access relevant datasets [12]. More general toolkits
like SpeechBrain [13], TensorFlow [14], or PyTorch [15] in-
clude handling of data, but do not focus on data versioning and
management. The Hugging Face Datasets [16] library extends
the dataset handling from TensorFlow and makes it independent
of any machine learning library. It provides access to datasets
for natural language processing, but also computer vision, and
audio. Datasets can efficiently handle very huge datasets by
streaming the data and loading it only partially into memory.
On the Hugging Face Hub9, it provides repositories for datasets
in which the versioning is handled by Git and Git Large File
Storage. As Datasets addresses data management in a similar
way to audb, Section 4 will compare them in more depth.

6https://git-lfs.com
7https://github.com/alebedev/git-media
8https://dvc.org
9https://huggingface.co/datasets
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Table 1: Default metadata entries in the header of a dataset. If
needed, the list can be extended by custom fields.

Field Mandatory Description

name yes name of dataset
source yes original source, e. g., URL
usage yes data usage, e. g., research
author author(s)
description long description
expires expiration date if applicable
languages included languages
license license
organisation organisation

3. Library Overview and Design
The most important functionality of the library is to load a
dataset and access its annotations and files. The following ex-
ample loads version 1.3.0 of the emodb dataset [17] and returns
the file names and corresponding annotations stored in a table
with the name ‘emotion’ as a pandas dataframe:

db = audb.load("emodb", version="1.3.0")
df = db["emotion"].get()

A complete list of all available functions and classes with ex-
amples is provided with the audb API documentation.10

3.1. Annotations, Metadata and Header

Annotations are stored as columns in tables, which are repre-
sented in a human readable way by CSV files named ‘db.<table
id>.csv’, and cached as pickle files for faster access. Each ta-
ble and column is identified by a unique ID. The rows in the
tables are associated with audio files or segments of audio files,
which define the index of the table. A filewise index is used to
reference files as a whole:

file,emotion
a.wav,happy
b.wav,angry

Or if segments should be referenced, a segmented index with
additional start and end times is used:

file,start,endemotion
c.wav,0 days 00:00:01.0,0 days 00:00:03.3,happy
c.wav,0 days 00:00:03.5,0 days 00:00:07.8,angry

Annotations that are not attached to a file can be organised in
misc tables, which support custom indices. e. g., the following
table stores age and gender of the speakers in the dataset:

speaker,age,gender
spk0,29,female
spk1,93,male

It is possible to restrict the values in a column of a (misc) table
to a certain data type or range (bool, date, float, integer, object,
string, time) by assigning it to a scheme. For example, a column
with annotations of emotion can be restricted to a set of labels
like ‘happy‘, ‘angry‘, ‘neutral‘. This information is stored in
the header of a dataset.

In addition, the header lists information about attachments,
tables, columns, raters, and splits. And it stores metadata about
the dataset, which is summarised Table 1. The header is saved
in a YAML file, which is located in the root folder of the dataset.

10https://audeering.github.io/audb/api/audb.html
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Figure 1: A dependency system ensures that only new or altered
files are uploaded to the server for new dataset versions. For
instance, in v2.0, a dependency to ‘f1.wav‘ from v1.0 is set (left
part). When the dataset is loaded, references are resolved and
a self-contained copy of the dataset is created in the cache. If
possible, files are retrieved from other versions of the dataset
that exist in the cache. For instance, when loading v2.0 the file
‘f1.wav‘ is copied from v1.0 (right part).

3.2. Repositories and Backends

audb can host datasets in one or more repositories, which can
be distributed over different backends. Currently, audb supports
a local file system, and an Artifactory instance as backend. But
it is also possible to implement custom backends and register
them with audb.

The repository of a dataset is defined by a name, a host, and
a backend, and can be obtained via:

repo = audb.repository("emodb", version="1.3.0")
repo.name
repo.host
repo.backend

3.3. Publication and Versioning

A new dataset is published from a root folder, which contains its
header and tables, as well as, the referenced audio files, which
are possibly organised into sub-folders. For instance, consider
a dataset with two audio files and a table with ID ‘emotion’,
stored in a folder ‘dataset’:

dataset/
audio/

a.wav
b.wav

db.emotion.csv
db.yaml

The dataset can then be published as version 1.0.0 to some
repository with:

audb.publish("./dataset", "1.0.0", repository)

The dataset header, table, and audio files are uploaded as in-
dividual ZIP files to the repository. In addition, a dependency
table is created, which holds metadata about audio files (e. g.,
sampling rate) and records for every table and audio file in
which version of the dataset it is stored. The entries in the de-
pendency table are also available to the user, e. g., compare the
sampling rate entry in the model card in Figure 2.

To publish a new version of a dataset, a user downloads
header and tables of a previous version, and optionally also au-
dio files if she plans to replace them. Now, existing files can be
deleted or modified, and new files can be added. Afterwards,
the dataset can be published under a new version. During pub-
lication audb automatically identifies the changes and uploads



only the new or altered files. For the remaining files, a depen-
dency to the version in which it was last modified is set (see
Figure 1).

For well established datasets or datasets that grow over
time, we recommend to version the scripts that publish the
dataset on a service like Github. This allows users to open issues
or create pull requests to fix errors in the dataset. An example of
such a dataset project for the emodb dataset [17] can be found
at https://github.com/audeering/emodb.

Since audb handles the versioning and can automatically
detect changes made to a dataset, it is possible to fully automate
the publishing process. This allows it to directly integrate the
data publishing into annotation or data collection tools.

3.4. Flavours

When loading a dataset, by default, the original audio files are
retrieved. However, audb offers the option to request a dataset
in a specific flavour. In that case the audio files are converted to
the same format with a specific bit depth, sampling rate, chan-
nel selection, and mix-down. For each flavour, a separate cache
folder is used, i. e., the same dataset may be available in dif-
ferent formats. In a machine learning pipeline, flavours can be
used to ensure that audio files stemming from different datasets
are in the same format, e. g., share a sampling rate of 8000Hz:

db = audb.load("emodb", sampling_rate=8000)

3.5. Partial Loading

To speed up loading, it is possible to request only specific parts
of a dataset. For example, the header and tables of a dataset can
be loaded without audio files:

db = audb.load("emodb", only_metadata=True)

Or specific tables can be loaded, which will only load audio files
referenced in those tables:

db = audb.load("emodb", tables="emotion")

Or specific audio files can be loaded, which will automatically
remove other entries from the tables:

db = audb.load("emodb", media="wav/03a01Fa.wav")

3.6. Caching

When a dataset is loaded, audb figures out missing tables and
audio files, and either copies them from an already cached ver-
sion of the dataset or, if that is not possible, downloads them
from the server (see Figure 1). If the dataset is completely
cached, loading works without an internet connection. Inside
the cache a folder is created for every version and flavour of a
dataset. Dependencies to earlier versions are automatically re-
solved so that the folder in which the dataset is stored contains
all files. This consumes more space, but has the advantage that
the dataset is self-contained and can be shipped as is and di-
rectly loaded with audformat. Tables are cached as CSV files,
and in addition pickled for fast reading.

3.7. Removing Audio Files From All Versions

Audio recordings may contain sensitive information. There-
fore, audb offers the option to remove specific audio files from
all published versions. This goes beyond dropping files with
a new dataset version as discussed in Section 3.3, which does

not remove files from previous versions. This can result in non-
reproducibility of some results, but avoids completely removing
affected versions of the dataset.

4. Comparison with Hugging Face Datasets
The Hugging Face Hub provides data repositories to publish
datasets with Hugging Face Datasets. A data repository con-
tains documentation of the dataset and a Git repository with Git
Large File Storage support to version the data. A data repository
can contain a so called loading script, which Datasets executes
when loading the data. This allows Datasets to download data
from external sources and easily incorporate public datasets al-
ready stored somewhere, e. g., on Zenodo. As a consequence
of this approach, Datasets lacks information which files persist
between versions of a dataset and therefore all data (again) has
to be downloaded when a new version of a dataset is requested.
In contrast, audb does not support linking external sources as
all audio files must be part of the repository. This, however, en-
ables audb to store and load the data more efficiently since the
same file can be shared across versions. Another disadvantage
of loading datasets with a script is that rolling out a dataset can
be slow, as it might require parsing a million lines of annota-
tions first and convert them from row to column representation.

audb can download single audio files from a dataset,
whereas with Datasets, this is only possible if the creator of a
dataset puts each audio file into a single archive with the name
of the audio file so that it can be addressed during download.
However, the common approach with Datasets is to not pub-
lish individual audio files, but bundle them into few large splits
(e. g., train, dev, test) as in the case for Librispeech [18].11

Datasets scales to very large datasets as its data loading is
based in Apache Arrow12 and allows it to load datasets only
partially into memory and to stream datasets when download-
ing them. audb always has to load whole tables into memory.
It offers two strategies for avoiding high memory consumption:
splitting into smaller tables and using partial loading (see Sec-
tion 3.5). An advantage of audb is that it uses pickled files,
which read faster than Apache Arrow files.

Datasets does not support organising annotations into dif-
ferent tables, or referencing the same audio files or parts of it
multiple times. Each data point that is returned contains the ac-
tual audio signal, a link to the corresponding audio file and asso-
ciated labels. Whereas in audb, there is only a loose connection
between audio files and annotations. This means there is ex-
actly one copy of an audio file, even when it is referenced from
different tables or different, possibly overlapping segmentation
exist. It further allows mapping annotations from one table to
another. For example, consider the following three tables:

# ID: speakers
speaker,age
spk01,19
spk02,21

# ID: files
file,speaker
a.wav,spk01
b.wav,spk02

# ID: emotion
file,start,end,emotion
a.wav,0,0 days 00:00:01,happy
a.wav,0,0 days 00:00:02,calm

11https://huggingface.co/datasets/librispeech_asr
12https://github.com/apache/arrow



emodb

Created by Felix Burkhardt, Astrid Paeschke, Miriam Rolfes, Walter Sendlmeier, Benjamin
Weiss

version 1.3.0

license CC0-1.0

source h�p://emodb.bilderbar.info/download/download.zip

usage unrestricted

languages deu

format wav

channel 1

sampling
rate 16000

bit depth 16

dura�on 0 days 00:24:47.092187500

files 535

repository data-public

published 2022-08-05 by audeering-uni�est

Description

Berlin Database of Emo�onal Speech. A German database of emo�onal u�erances spoken by
actors recorded as a part of the DFG funded research project SE462/3-1 in 1997 and 1999.
Recordings took place in the anechoic chamber of the Technical University Berlin, department
of Technical Acous�cs. It contains about 500 u�erances from ten different actors expressing
basic six emo�ons and neutral.

Tables

ID Type Columns

emo�on filewise emo�on, emo�on.confidence

emo�on.categories.test.gold_standard filewise emo�on, emo�on.confidence

emo�on.categories.train.gold_standard filewise emo�on, emo�on.confidence

files filewise dura�on, speaker, transcrip�on

speaker misc age, gender, language

Schemes

ID Dtype Min Max Labels Mappings

age int

confidence float 1

dura�on �me

emo�on str

anger,
boredom,
disgust,
fear,
happiness,
neutral,
sadness

gender str female,
male

language str

speaker int
3, 8, 9, 10,
11, 12, 13,
14, 15, 16

age,
gender,
language

transcrip�on str

a01, a02,
a04, a05,
a07, b01,
b02, b03,
b09, b10

✓

Figure 2: Excerpt of the data card for emodb [17]. It includes a
description of the dataset and metadata like author and license,
and lists the tables, columns and schemes in the dataset.

If the ‘speakers’ table is assigned as scheme to the ‘speaker’
column of the ‘files’ table, its labels can be mapped to the values
of a column in the ‘speakers‘ table, e. g., ‘age’. And it can be
requested using the segmentation from the ‘emotion’ table as
index:

db["files"]["speaker"].get(
index=db["emotion"].index,
map="age",

)

The result is a segmented table with the age of the speakers:

file,start,end,age
a.wav,0,0 days 00:00:01,19
a.wav,0,0 days 00:00:02,19

5. Use Cases
5.1. Browsing and Searching Datasets

audb provides the possibility to list available datasets.

datasets = audb.available(only_latest=True)

The results can be filtered for datasets that have a scheme ‘emo-
tion’:

# Create scheme lookup dictionary
schemes = {}
for name, version in datasets.version.items():

schemes[name] = list(
audb.info.schemes(name, version=version)

)
# Search for datasets with scheme "emotion"
emotional_datasets = [

name for name in schemes
if "emotion" in schemes[name]

]

Since metadata and annotations are provided in a well defined
format, it is possible to automatically create documentation in
form of data cards or datasheets [2]. Figure 2 shows an exam-
ple data card for the emodb dataset [17]. It summarises the most
important facts in a tabular form, provides a long description of
the dataset together with an audio example and lists available
tables, columns, and schemes. Data cards for all datasets avail-
able with the default public repositories of audb are available at
https://audeering.github.io/datasets/.

5.2. Fine-tuning a Model for Emotion Recognition

With the emergence of foundation models [19] pre-trained on
large amounts of data, it is nowadays a common task in the par-
alinguistic community to fine-tune generic models to a specific
problem. The following example shows how this can be easily
achieved using audb and audinterface.

Assume we have a callable model that converts an audio
signal into a compact feature representation (embeddings). We
first create an interface for it:

feature_extractor = audinterface.Process(
process_func=model,
num_workers=4,

)

Then, we load a dataset and convert it into a single feature ma-
trix on which we train a linear model that predicts the emotional
content of the input signal:

db = audb.load("emodb", version="1.3.0")
labels = db["emotion"]["emotion"].get()
features = feature_extractor.process_index(

labels.index
)

For a full example see https://github.com/audeering/
w2v2-how-to/blob/main/notebook.ipynb.

5.3. Publishing new dataset splits

Datasets of emotional speech might be published without an of-
ficial train, dev, test split like emodb [17] or IEMOCAP [20].
Other datasets such as CommonVoice [21] or VoxCeleb [22]
might miss splits for tasks not considered originally when col-
lecting the data, e. g., age prediction. audb makes it easy to add
new tables and splits to a dataset and publish a new version, en-
couraging other researchers to reuse them. For example, with
version 1.2.0 we added a train-test split to the emodb dataset:

audb.load_to("./db", "emodb", version="1.1.1")
# Add new splits to db
audb.publish("./db", "1.2.0", repository)

6. Conclusion
The recent success of foundation models [19] in the paralinguis-
tic and audio community has raised the need for a large number
of diverse datasets to train and evaluate models fine-tuned to a
specific task [23]. audb is a lightweight, yet powerful Python
library to publish, maintain and access audio datasets and their
annotations. Its highlights are: a built-in versioning system, an
automated workflow to publish and update datasets locally or
on a remote server, and sharing datasets to specific end-users
or communities. We published a selection of publicly available
datasets in a public repository. The repository is pre-configured
in audb and the datasets can be directly accessed. For a list of
available datasets please visit anonymised.
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